Confederation Ontario Power Generation BioEnergy Learning and Research Centre

A Recent Biomass Installation at Confederation College, Thunder Bay – Lessons Learned & Opportunities in Northwestern Ontario

OPG BLRC HISTORY

- 2010 Confederation College makes decision to proceed with biomass (<u>why?</u>) as source of energy for major <u>heating</u> retrofit using wood <u>chips (why chips?)</u>
- General Contractor prepares fatal flaw analysis and establishes business feasibility of retrofit
 - regulatory constraints received only cursory review (was not apparent at the time)
- Biomass Boiler Vendor Selected

OPG BLRC HISTORY (cont.)

- 2011 Draft ECA issued using 1990 Wood Combustor Guidelines as standard conditions (Now A 14 (under 3 MW))
 - Vendor could not meet ECA conditions
- New vendor (Evergreen Bioheat / Froling) selected
- College proceeded with amending Draft ECA to reflect new unit
- 2012/13 ECA for 1 MW Froling unit received

OPG BLRC HISTORY (cont.)

- 2013 Froling attempts to get CSA/ASME Certification for 1 MW unit
 - ASME suggests modification to controls and water wall thickness as condition of certification
 - Would require full re-tooling and engineering of production line for increased cost per unit and efficiency loss
 - Froling presents 2 x 500kw option to College
- 2014 ECA finalized to reflect changes (not problematic)

OPG BLRC HISTORY (cont.)

- 2015 Commissioning and Emissions Research
- 2016 Operational Assessment
- 2017 Fuel Feed System Replaced (!)

CHALLENGES

Air Emissions Permitting

1) College did not have up to date site-wide ECA, biomass energy project triggered full site-wide update including new dispersion modelling ~\$30 000 cost)

CHALLENGES (YOU WON'T HAVE!)

Air Emissions Permitting (con't)

- 1) Application of 1990 Combustor Guidelines were not designed for small factory built equipment (temperature is major issue)

 Now A 14
- 2) Continuous Emissions Monitoring is a significant financial constraint Up to 30% of the total project cost is now avoidable
- 3) Application processing times were upwards of 12 18 months EASR for certified systems

THANK YOU:

- -OPG
- -OMECC
- -NR Can
- -LU
- -OMNR
- -Froling / Evergreen Bioheat / Biothermic

CHALLENGES

Equipment and Suppliers

- 1. Domestic supply of equipment that can meet both CSA/ASME and environmental performance* requirements
- 2. Engineering/Design expertise for small scale fuel handling
- * In my opinion the biomass sector needs robust emissions guidelines given history in Ontario

CHALLENGES

Equipment and Suppliers (con't)

- 1. Lack of "Wood Culture" Application of Building Code/Fire Code Acceptance in Insurance Sector
- 2. Market Development (Chicken and Egg)
- 3. Fuel Supply Logistics / Chip Quality

LESSONS LEARNED - CHIPS

- Fuel Quality (pick one fuel spec and enforce it)
- Fuel Quality (watch for sand contamination)
- Fuel Quality (\$ / energy unit vs \$ / tonne)

LESSONS LEARNED - GENERAL

- Conduct a thorough <u>regulatory</u> constraints analysis as part of feasibility study;
 - Look at <u>all</u> aspects of regulatory requirements for chosen technology (MOECC, TSSA, ESA, CSA etc.)
- Conduct thorough engineering & design costing studies (i.e. Class 10);
- Confirm and verify performance of equipment;

LESSONS LEARNED - GENERAL

 You will probably know as much or more as your General Contractor.
 Don't be shy!

SUMMARY

- In Ontario A 14 has removed a significant barrier to adoption of CLEAN biomass heat technology and its associated <u>benefits*</u>
- Note: <u>CHP in Ontario must also consider the REA</u> (<u>Renewable Energy Act</u>)
- * For many communities the socio economic befits are perhaps more important than cost or carbon savings

ONTARIO BIOENERGY OPPORTUNITY

- Significant number of diesel/fuel oil/propane (high \$)
 dependent communities in Northwestern Ontario, Far North
 and parts of Eastern Ontario;
- There is an increasing interest in small scale biomass based energy (heat and power);
- Opportunities range from 10 kw (residential), 50 kw (large multi-residential) up to 3 MW (community heat);
- Growing international wood pellet market is driving domestic production opportunities;
- Clean and efficient combustion technologies are on the market and costs are dropping;

UNION GAS - ONLY SUPPLIER IN N. ONT.

REMOTE COMMUNITIES - NOT ON GRID

- •29 communities on diesel generation
- •19 are served by Hydro One
- •These 19 used 15.6 million litres of diesel 2011

*Hydro One Remote Communities Inc. 2011 Greenhouse Gas Inventory Report and Action Plan

GREENHOUSE GAS EMISSIONS

Table 5.1: Emission Source Summary

Source	Emissions (t CO2e)	% of Total
DIRECT GHG EMISSIONS		
Diesel Combustion	43,405	58.73%
Bio-diesel Combustion	31	0.04%
Natural Gas Consumption	37	0.05%
ENERGY INDIRECT EMISSIONS		
Electricity	37	0.05%
OTHER INDIRECT EMISSIONS		
Fuel Transport via ROAD	112	0.15%
Fuel Transport via AIR	30,285	40.98%
TOTALS	73,908	100.00%

^{*}Hydro One Remote Communities Inc. 2011 Greenhouse Gas Inventory Report and Action Plan

ESTIMATING THE NWO REGIONAL BIOMASS HEAT MARKET

- 30 FN Remote Communities (not connected to electrical grid)
- 20 + FN and Municipalities on grid but no natural gas
- Assume each community = at least 5 MW total heat load
- Assume Priority Heat Load = 1.5 MW
- Individual Community Project Cost Estimate = \$3 million
 - 50 communities x \$3 million per community
 - = \$150 million realistic near term capital market for NWO

+ Annual O+M?

FUEL SUPPLY MARKET

```
• 75 MW = 75,000 - 100,000 tonnes per year in fuel demand
```

Assume \$70/tonne chips

\$200/tonne pellets

50/50 split

• Total = \$2,625,000 - \$3,500,000 in annual chip sales

+

\$7,500,000 - \$10,000,000 in annual pellet sales

CARBON CAP AND TRADE

80% less emissions than NG (Pembina Institute)

>80% reductions for switching from Gasoline, Diesel, Coal

• 50 + installations = significant cumulative reduction

PROJECT FINANCING

- Need to get past Capital vs Operating Budgets in MUSH sector
- Incentive Programs (grants / loans tailored to cost savings)
- 3rd Party Financing based on guaranteed Annual Cost Savings
- Carbon

THE PATH FORWARD

- 1) Establish a national fuel standard
- 2) Identify and establish (more) demonstration projects and benchmark performance (cost savings, energy metrics, carbon reduction, job creation)
- 3) Formally identify fuel substitution opportunities and incent conversion as part of provincial/national GHG reduction strategy
- 4) Establish National Network of Practitioners...